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guide section was only 3..5 db at 6.8 kMc.
f~hen the operating frequency is reduced

further, the cutoff of Cohn’s mode appears.

In the case of Fig. 4, Cohn’s cutoff is close

to the actual cutoff of the channel wave-

guide.
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ACoaxial Adjus.table Sliding

Termination

INTRODUCTION

The accuracy of ilmpedauce measure-

ments usiug modified reflectometer tech-

niques depends mainly upo]l the tuning of

the reffectorneter. This tuniug is accomp-
lished by sliding first a low-reflection term-

ination and, then, a high-reflection termina-

tion (sliding short circuit) in the output
waveguide of the reflectorneter. The actual

error th,~t cauoccur due to imperfect tuning
can be coruputedl and depends to a large

extent upon the size of the reflection roeffi-
cieilt of the lcm--reflection sliding termina-
tion. The lo~~-er this reflection coefficient is,
thesnmlle rtheerrorwillbe. The adjustable
sliding ternlination described ir, this paper

w-as developed to reduce this reflectorneter

tuning error; hence, the main emphasis ~vas

on obtaining a stable, very Iov-reflection

coefficient.

~L3SCRII>’rION or INSIIUMENT

.A drawing showing the principle of the

instrument is shown in Fig. 1. The principle
of operation is similar to the one described
by Ellel:wood and Ryan.z The main diffel--
euce is that, instead of using a double slug

tuner in front of a termin~tin gelement, the
reflection coefficient of the actual terminat-

ing element is variable. It is varied by mov-

ing a lossy cylinder inside of a 10SSY t~per.
\I’hen the face of the cylinder is positioned

immediately in front of the edge of the

taper, a maximum reflection is obtained;
l~hen it is completely withdraw-u inside of
the taper, a minimum reflection is obtained.

The total reflection coefficient of the slid-

ing termination is a combination of the re-
flection from the terminating elements and
the reflection from the bead in front of the
terminating element. The bead is mounted
on a ver>- thin dielectric tube that extends
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FW 1—Cross section of the adjust:~ble sliding termination.

through the Iossy terminating elements. .\
maximum reflection occurs whet] the two

reflections are in phase, and a minimum re-
flection occurs ~vheu they are out of phase.

THEORY OF OPERATION

The equatio113 for the total reflection

coeficieut of the termination ill terms of the
reflection coet%cients of the bead and the

term inat ing elements is

r~ (1 – r,z)el~
r = r~ + —’—_—_ ,

1 + rlrLeJ*
(1)

\vhere r, is the reflection coefficient of the

bead, r~ is the reflection coefficient of the

terminating element and @ is the angle of
colnbirmtion of the two reflection coeffi-
cients, The assumption that the bead and

trausm ission line are loss less has been made

in order to use this equation.

The minimum value of r is

Ir,l - lrLl

‘“”n = _i – ] rlr.~ “
(a

For m,,,, to equal zero, I r, I must equal
I r,, 1. Iu practice, the range of I r~ I that can

be obtained is measured and then the bead

is designed to give a reflection coefficient of

the desired value. If a small reflection coefli-
cieut is of prime interest, the bead is made

to have a reflection] just slightly larger than
the smallest obtainable value of I r~ 1. If a
wide range of reflection coefficient is desired,

the bead is made to have a reflection coeffi-
cient just slightly smaller than the largest
obtainable value of I r~. 1.

The reflection coefficient of a single bead
call be computed from (3). L

27T4F1
–j(~ – 1) tan —=—

tvhere ~1 is the reflection coefficient of the
bead, Z is the length of the bead, . is the di-
electric constant of the bead and x is the
wa~-elength in free space. If the value of

is small, \\,hich is usually the case, the n}ag-

+

Fig. 2—Graph of (3).

uitude of the reflectiol~ coefficient can be

closely approximated by (4).

rl~~(. –l). (4)

Eq. (-l) is graphed in Fig. 2 for values of c

from 1.2 to 2.5.

RESULTS

Figs. 3 and 4 show instruments that have

been made using the abo~-e principles. The
instrument iu Fig. 3 was designed for a $-
iuch transmission line and the one in Fig. 4

was designed for a ~-inch line. In each Case,

stable reflection coefficients of less thau
0.005 ~vere readily attaiued, The range of re-
flection coeficiellt of the terminating ele-
ment of the &inrh instrument was from
0.02 to 0.15 at a frequency of 4 Gc. The bead
WM designed to ~ive a reflection coefficient
of approximately 0.05. This was done by
making the outer diameter of the bead con-
siderably less than the inner diameter of

the outer conductor to gi~w the bead an

equivalent dielectric consta11t6 of approxi-

z T. Mcmwo, “Microwave Transmission Design
Data, ” Dover Pubhcatlons, Inc., A-ew Yolk, IN. Y.,
p. 31; 1958.

d Ibfd., SCC P. 84.

HJ. W. E. Griesmann, “l{a.nd book of Design and
Performance of Cable Connectors for Microwave
(’se, ” Report No. R-520-56; PIR-450 for Bureau of
Ships Contract No. NObsr-52078 Index No. NE-
11071S; 1956.
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mately 1.5. If the Iowest vahre of I rL \ is

sufficiently small, the reflection from the thin
dielectric tube may be equal to, or larger
than, this value and no bead is required to
give a matched condition. The reflection
from the thin dielectric tube can be calcu-

lated by first calculating the equivalent di-

electric constant of the medium in the trans-

mission line where the tube is located and

then by computing j r~ ] from the equation

In Fig. 5, the quantity I rl I is plotted as a
function of dielectric constant, over a real-
istic range of values. The use of a bead that
only partially fills the coaxial line (or no
bead at all) is desireable because it increases
the stability of the instrument at very low

values of reflection coefficient.
One significant result that has been ob-

tained in using the very low-reflection slid-

ing terminations is the capability to tune

the reflectometer down to the point where

the uonuniformities of the precision coaxial
line become the limiting factor in the tuning

operation, and hence the limiting factor in
obtainable accuracy of a reflection coeffi-
cient measurement. In this light, the sliding

termination should be very useful in evaluat-

Fig. 3—$-inch adjustable slid ing termination.

Fig. 4—+-inch adjustable sliding termination.
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Fig. 5—Graph of (5).

ing the uniformity of coaxial lines as well as

for improving the present obtainable ac-
curacy of coaxial reflectometer rrleasure-
ments.
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Approximate Method of Determining

the Cutoff Frequencies of Wave-

guides of Arbitrary Cross S~ection

THEOKY

Electromagnetic propagation in a long,

prismatic waveguide obeys the scalar

Helmholtz equation

–vV = K~

where

* =a potential function

K = frequency parameter
—VZ = positive definite plane Laplacian

operator.

If the boundary is a curve natural to
any of the common coordinate systems for
which Helmholtz equation separates, the

solutions can be derived by classical meth-

ods and may be expressed in terms of known

transcendental functions. For the wave-

guides having more complicated cross sec-

tions, however, the cutoff frequencies can
only be approximately determined. There

are, however, some technical advantages in
using these more complicated cross sections.
In circular waveguides because of the axi-
symmetrical field configurations, the waves
do not have directional stability but tend to
shift in phase intermittently, producing fad-
ing and other undesirable consequences. To
minimize this effect one or more Iogitudinal

short vanes are sometimes installed on the
wall to ‘[lock” the modes in prescribed di-

rections, These vanes change the (cutoff fre-

quencies in the waveguide by an appreciable

amount. This correspondence shows that it
is advantageous to conformably transform
the complicated cross section onto a simpler
one, (i. e., the unit circle) where the boundary

conditions can be easily satisfied. Transfor-
mation functions for many common curves

are available in standard references. 1.z For
other curves, approximate transformation
function can be determined by the series

method, ! Once the transformation, function

is known, the problem is reduced to the
solution of the transformed eqj~ation as

follows :

(1)

where z =~(f): the transformation function.
Many methods are available to solve the

above equation approximately. Among
them, the collocation method is perhaps the
simplest. If greater accuracy of the approxi-
mate frequency parameter is desired, one
may use the iteration tech nique suggested

by Temple.3 The first iteration c,m be ex-
pressed in terms of upper and low,sr bounds

as follows:

Manuscript received July 12, 1963: revised Sep-
tember 23, 1963.

I L. V. Kantorovic~, and V. I. KrYlov, ‘Approxi-
mate Methods of Higher Analysis, ” [nterscience
Publishers, Inc., New York, N. l’.; 1958.

z N. I. Muskhelishvili, “Some Basic F]roblems on
the Mathematical Theory of Elasticity, ” P. Noord-
hoff, Ltd., Groninge”, Netherlands; 1953.

2 G. Temple, “The computation of characteristic
numbers and characteristic functions, n Proc, London
Math, Sot., vol. 29, pp. 257-280; 1928.
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where u and v are two functions which sat-
isfy the boundary conditions and are related

by

—vz~ = ~, (3)

Kz is the estimated frequency parameter of

the first harmonic and KL is the parameter
which determines the lowest frequency cut-

off point. In this discussion, only the case

of the TM waves ($= O at the boundary) is
considered. The case of the TE waves
merely requires a straight forward modifica-

tion of the method.

APPLICATIONS

A. Rectangula~ Waveguide

This case is treated here in order to il-
lustrate the method, The transformation

function which maps a square region whose

sides are 2a by 2a onto a unit circle is

f
z=A .a ‘(1+$4) -LW&A =1.08 and$=re~8.

0

The solution of the transformed partial dif-
ferential equation can be expressed by means

of a complete set of eigenfunctions

. .

IJ(r, @ = Re z z B.d.(k.Je<ne
m=o .=0

where knm satisfies the boundary condition

J.(k.mr) 1,-, = O.

As a first approximation we take

+(Y, 0) - W(r) = ~ BOJO (K,mr).

.,=0

Substitution of the above function into (1)
gives the error distribution,

~.

c(7, 0) = ~ Bom.Jo(ko,mr)
7J=1

. [k,~’(1 +2@ cos 40 + ?’8)’” + (1.08) ’a2K2].

We observe that ,(r, .9) varies periodically
with 6’. For simplicity we assume that the
mean error does not differ much from (r,

rr/8). We arbitrarily choose five points. The
computed first two frequency parameters

are

2.236
K,=—

5.178
Kz=—

a a

which compare favorably with the exact

values from the closed form solutions which
are

2.2214
K,=—

4.9673
A72 = —— .

a a


