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guide section was only 3.5 db at 6.8 kMec.
When the operating frequency is reduced
further, the cutoff of Cohn’s mode appears.
In the case of Fig. 4, Cohn's cutoff is close
to the actual cutoff of the channel wave-
guide.
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A Coaxial Adjustable Sliding
Termination

INTRODUCTION

The accuracy of impedance measure-
ments using modified reflectometer tech-
niques depends mainly upon the tuning of
the reflectometer. This tuning is accom-
plished by sliding first a low-reflection term-
ination and, then, a high-reflection termina-
tion (sliding short circuit) in the output
waveguide of the reflectometer. The actual
error that can occur due to imperfect tuning
can be computed! and depends to a large
extent upon the size of the reflection coeffi-
cient of the low-reflection sliding termina-
tion. The lower this reflection coefficient is,
the smaller the error will be. The adjustable
sliding termination described in this paper
was developed to reduce this reflectometer
tuning error; hence, the main emphasis was
on obtaining a stable, very low-reflection
coefhcient.

DESCRIPTION OF INSTRUMENT

A drawing showing the principle of the
instrument is shown in Fig. 1. The principle
of operation is similar to the one described
by Ellenwood and Ryan.? The main differ-
ence is that, instead of using a double slug
tuner in front of a terminating element, the
reflection coefficient of the actual terminat-
ing element is variable. It is varied by mov-
ing a lossy cylinder inside of a lossy taper.
When the face of the cylinder is positioned
immediately in front of the edge of the
taper, a maximum reflection is obtained;
when it is completely withdrawn inside of
the taper, 2 minimum reflection is obtained.

The total reflection coefficient of the slid-
ing termination is a combination of the re-
flection from the terminating elements and
the reflection from the bead in front of the
terminating element. The bead is mounted
on a very thin dielectric tube that extends
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Fig. 1—Cross section of the adjustable sliding termination.

through the lossy terminating elements. A
maximum reflection occurs when the two
reflections are in phase, and a minimum re-
flection occurs when they are out of phase.

THEORY OF OPERATION

The equation® for the total reflection
coefiicient of the termination in terms of the
reflection coefficients of the bead and the
terminating elements is

I=Ti+——r——" M

where T is the reflection coefficient of the
bead, T'y is the reflection coefficient of the
terminating element and ¢ is the angle of
combination of the two reflection coeffi-
cients. The assumption that the bead and
transmission line are lossless has been made
in order to use this equation.
The minimum value of T' is

In] —Iraf

Toin = ——————
1— | T

@

For Thmum to equal zero, |Ty| must equal
[T.}. In practice, the range of |Tz| that can
be obtained is measured and then the bead
is designed to give a reflection coefficient of
the desired value. If a small reflection coeffi-
cient is of prime interest, the bead is made
to have a reflection just slightly larger than
the smallest obtainable value of |T'z|. If a
wide range of reflection coefficient is desired,
the bead is made to have a reflection coeffi-
cient just slightly smaller than the largest
obtainable value of |T'z]|.

The reflection coefficient of a single bead
can be computed from (3).!

2r/€l

—j(e — 1) tan ———
I = A ay ) (3)
e + je — 1) tan Zmyiel

where T is the reflection coefficient of the
bead, / is the length of the bead, ¢ is the di-
electric constant of the bead and X\ is the
wavelength in free space. If the value of

2r/el
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is small, which is usually the case, the mag-

2T, Moreno, “Microwave Transmission Design
Data,” Dover Publications, Inc.,, New Yoik, N. V.,
p. 31; 1958,

4 Ibid., sce p. 84.
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Fig. 2—Graph of (3).

nitude of the reflection coefficient can be
closely approximated by (4).

wl
1"1:;(6— 1). H

Eq. (4) is graphed in Fig. 2 for values of e
from 1.2 to 2.5.

RESULTS

Figs. 3 and 4 show instruments that have
been made using the above principles. The
instrument in Fig. 3 was designed for a $-
inch transmission line and the one in Fig. 4
was designed for a {%-inch line. In each case,
stable reflection coefficients of Jess than
0.005 were readily attained. The range of re-
flection coefficient of the terminating ele-
ment of the t%-inch instrument was from
0.02 to 0.15 at a frequency of 4 Ge. The bead
was designed to give a reflection coefficient
of approximately 0.05. This was done by
making the outer diameter of the bead con-
siderably less than the inner diameter of
the outer conductor to give the bead an
equivalent dielectric constant’ of approxi-

5J. W. E. Griesmann, “Handbook of Design and
Performance of Cable Connectors for Microwave
Use,” Report No. R-520-56; PIB-450 for Bureau of
Ships Contract No. NObsr-52078 Index No. NE-
110718; 1956.
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mately 1.5. If the lowest value of |I'.] is
sufficiently small, the reflection from the thin
dielectric tube may be equal to, or larger
than, this value and no bead is required to
give a matched condition. The reflection
from the thin dielectric tube can be calcu-
lated by first calculating the equivalent di-
electric constant of the medium in the trans-
mission line where the tube is located and
then by computing |I:] from the equation

o) =¥ = )

In Fig. 5, the quantity |I] is plotted as a
function of dielectric constant, over a real-
istic range of values. The use of a bead that
only partially fills the coaxial line (or no
bead at all) is desireable because it increases
the stability of the instrument at very low
values of reflection coefficient.

One significant result that has been ob-
tained in using the very low-reflection slid-
ing terminations is the capability to tune
the reflectometer down to the point where
the nonuniformities of the precision coaxial
line become the limiting factor in the tuning
operation, and hence the limiting factor in
obtainable accuracy of a reflection coeffi-
cient measurement. In this light, the sliding
termination should be very useful in evaluat-

Fig. 3—3%-inch adjustable sliding termination.

Fig. 4—%-inch adjustable sliding termination.
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Fig. 5—Graph of (5).

ing the uniformity of coaxial lines as well as

for improving the present obtainable ac-

curacy of coaxial reflectometer measure-
ments.
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Approximate Method of Determining
the Cutoff Frequencies of Wave-
guides of Arbitrary Cross Section

THEORY

Electromagnetic propagation in a long,

prismatic waveguide obeys the scalar
Helmholtz equation

—v = K%
where

¥ =a potential function
K =frequency parameter
—V2=positive definite plane Laplacian
operator.

If the boundary is a curve natural to
any of the common coordinate systems for
which Helmholtz equation separates, the
solutions can be derived by classical meth-
ods and may be expressed in terms of known
transcendental functions. For the wave-
guides having more complicated cross sec-
tions, however, the cutoff frequencies can
only be approximately determined. There
are, however, some technical advantages in
using these more complicated cross sections.
In circular waveguides because of the axi-
symmetrical field configurations, the waves
do not have directional stability but tend to
shift in phase intermittently, producing fad-
ing and other undesirable consequences. To
minimize this effect one or more logitudinal
short vanes are sometimes installed on the
wall to “lock” the modes in prescribed di-
rections. These vanes change the cutoff fre-
quencies in the waveguide by an appreciable
amount. This correspondence shows that it
is advantageous to conformally transform
the complicated cross section onto a simpler
one, (7.e., the unit circle) where the boundary
conditions can be easily satisfied. Transfor-
mation functions for many common curves
are available in standard references.’-? For
other curves, approximate transformation
function can be determined by the series
method.? Once the transformation function
is known, the problem is reduced to the
solution of the transformed equation as
follows:

dk

——V21// =

€% M

where z=/f({): the transformation function.
Many methods are available to solve the
above equation approximately. Among
them, the collocation method is perhaps the
simplest. If greater accuracy of the approxi-
mate frequency parameter is desired, one
may use the iteration technique suggested
by Temple.? The first iteration can be ex-
pressed in terms of upper and lower bounds
as follows:
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where # and v are two functions which sat-
isfy the boundary conditions and are related
by

—Vi = 0. 3)

K, is the estimated frequency parameter of
the first harmonic and K, is the parameter
which determines the lowest frequency cut-
off point. In this discussion, only the case
of the TM waves (¢ =0 at the boundary) is
considered. The case of the TE waves
merely requires a straight forward modifica-
tion of the method.

APPLICATIONS

A. Rectangular Waveguide

This case is treated here in order to il-
lustrate the method. The transformation
function which maps a square region whose
sides are 2a by 2a onto a unit circle is

£
z=A -af (14-£5-12dg; A =1.08and £=ref,
0

The solution of the transformed partial dif-
ferential equation can be expressed by means
of a complete set of eigenfunctions

¥(r,0) = Re 2_ 2° BunJu(lnm)e™
m=0 n=0
where k.., satisfies the boundary condition
TulClnir) Jrz = 0.
As a first approximation we take
W(r, 8) ~ W(r) = D BowJo (Komr).
m=0

Substitution of the above function into (1)
gives the error distribution,

N
e(r, 8) = Z BomJ o(komr)
m=1

[kam?(1 + 274 cos 40 + r5)H/2 + (1.08)%a2K2].

We observe that (7, ) varies periodically
with 6. For simplicity we assume that the
mean error does not differ much from (7,
7/8). We arbitrarily choose five points. The
computed first two frequency parameters
are

2,236 5.17
K, = 178
a a

K1=

which compare favorably with the exact
values from the closed form solutions which
are

4.9673

2=

_2.2214
a
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